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ABSTRACT

We discuss criteria by which one can classify, analyze,
and evaluate approaches to solving multidisciplinary de-
sign optimization (MDO) problems. Central to our dis-
cussion is the often overlooked distinction between ques-
tions of formulating MDO problems and solving the re-
sulting computational problem. We illustrate our general
remarks by comparing several approaches to MDO that
have been proposed.

INTRODUCTION

There are likely as many definitions of multidisciplinary
design optimization (MDO) as there are areas and phases
of design. For our discussion, we shall take MDO to
mean thesystematicapproach to optimization of com-
plex, coupled engineering systems, where “multidisci-
plinary” refers to the different aspects that must be in-
cluded in a design problem. For instance, the design of
aircraft involves, among other disciplines, aerodynam-
ics, structural analysis, propulsion, and control. See
Sobieszczanski-Sobieski and Haftka (1997), Alexandrov
and Hussaini (1997) for overviews of the field.

Broadly speaking, in engineering design problems
one attempts to improve or optimize several objectives—
frequently competing and conflicting measures of system
performance—subject to satisfying a set of design and
physical constraints. It is the nature of some of these
constraints that distinguishes the engineering design op-
timization problem from the conventional nonlinear pro-
gramming problem (NLP). As we discuss, the method
of treating the problem constraints provides the defining
characteristics for various approaches to solving MDO
problems.

The problem solution techniques comprise two ma-
jor elements: posing the problem as a set of mathemat-
ical statements amenable to solution and then defining
a procedure for solving the problem once it has been
posed. We use the term “formulation” to denote the first
element and the term “algorithm” to denote the second.

This distinction is crucial, although it is often blurred in
presentations of new approaches to MDO. An analysis
of an MDO formulation considers such attributes as con-
sistency, well-posedness, equivalence to other formula-
tions, optimality conditions, and sensitivity of solutions
to various perturbations. An analysis of an optimization
algorithm for solving a given formulation of an MDO
problem then considers local convergence rates, global
convergence properties, and iteration costs. This work
discusses the properties of MDO formulations, including
their effect on optimization algorithms.

A sizable body of approaches to solving MDO prob-
lems has been proposed over the years. However, there is
as yet only limited computational or analytical substanti-
ation of the practical applicability and algorithmic prop-
erties of the proposed methods. A number of recent ef-
forts (e.g., Alexandrov and Kodiyalam, 1999) have been
aimed at addressing this deficiency. The present work
pursues the following objectives:

� The enunciation of a systematic set of criteria for
analytical and practical evaluation of MDO meth-
ods;

� The classification of MDO formulations according
to the approach to maintaining feasibility with re-
spect to analysis and design constraints;

� The analysis of several formulations according to
the aforementioned set of criteria in order to give
some understanding of the trade-offs among the
various formulations;

� A sketch of how features of some specific formu-
lations of MDO problems affect optimization al-
gorithms.

The paper is organized according to this program. We
hope to provide the reader some guidance to understand-
ing the algorithmic and performance consequences of
choosing one formulation or another for solving an MDO

1



Proc., First ASMO UK /ISSMO CONFERENCE on Engineering Design Optimization, July 8–9, 1999, MCB Press

problem. A more detailed and comprehensive discussion
can be found in Alexandrov and Lewis (1999b) .

CHARACTERISTICS OF MDO FORMULATIONS

By MDO we mean that subset of the total design
problem—probably in the conceptual or preliminary
phase—that can be formulated as an NLP of the form:

minimize f(x; u(x))
subject to g(x; u(x)) � 0;

(1)

wherex is the vector of design variables andu(x) is de-
fined via a block system of equations,

A(x; u(x)) =

0
B@

A1(x; u1(x); : : : ; uN (x))
...

AN (x; u1(x); : : : ; uN (x))

1
CA = 0;

(2)
N being the number of blocks. In the context of MDO,
the blocks of the system usually represent the state equa-
tions for the disciplinary analyses and the necessary in-
terdisciplinary couplings. The state equations normally
form a set of coupled differential equations. System (2)
is known as the Multidisciplinary Analysis (MDA) sys-
tem. We have simplified the problem by assuming that
the multiple objectives of the system have been synthe-
sized in a single objectivef , because most extant MDO
formulations make this assumption.

At each iteration of a conventional optimization pro-
cedure, the design variable vectorx is passed to the MDA
system. The system is then solved for the state vectoru.
This reduces the dimension of the optimization problem
(1) by making it a problem inx only. However, each dis-
ciplinary analysis may involve an expensive procedure,
say, solving a differential equation. Moreover, to solve
the entire MDA system one has to use an iterative proce-
dure that brings the individual analyses into a multidisci-
plinary equilibrium.

It is the expense of implementing and executing a
straightforward, conventional optimization approach to
(1) that has mainly motivated researchers to propose al-
ternatives. We now turn to a set of criteria that one can
use to evaluate a proposed MDO formulation and gauge
the effects of the formulation on optimization algorithms.
Some of these considerations, such as disciplinary auton-
omy and per-iteration cost, are widely noted. However,
other criteria seem rarely taken into account, despite their
paramount importance.

Equivalence of Formulations

If we take (1) as representing the MDO problem we ide-
ally wish to solve, it is natural to ask whether an alter-
native formulation is equivalent to this original problem.
There is the question ofmathematical equivalence:If a
vector of design variables solves (1), then, suitably trans-
formed, does it yield a solution of the alternative formu-
lation, and conversely? If the reformulation is not math-

ematically equivalent, does improvement in the reformu-
lation at least correspond to improvement in the original
problem?

Equally important notions of equivalence are more
subtle. For instance, there is the question of how op-
timality conditions, constraint qualifications, and sensi-
tivity calculations in (1) correspond to those in an alter-
native formulation. These other notions of equivalence
have bearing on the practical application of optimization
algorithms to the solution of formulations of the MDO
problem. A formulation may be mathematically equiv-
alent to (1), yet algorithms applied to its solution may
exhibit drastically different behavior than when applied
to (1), and may even fail in some cases. We will touch on
this point again in our discussion of Collaborative Opti-
mization; further details can be found in Alexandrov and
Lewis (1999a) .

Ease of Implementation

Typically, a tremendous amount of time and effort is re-
quired to integrate the analysis software needed for any
given formulation of MDO and its solution. In particular,
at present there is little MDA capability in existing soft-
ware, and adding this capability requires a lot of work.
This leads to the next consideration.

Multidisciplinary Analysis

MDA is expensive and requires a considerable effort to
implement. The typical approach to avoiding the expense
of an explicit MDA is to introduce a relaxation of this
system, examples of which we will discuss later. One
does requires that the full set of MDA equations be sat-
isfied as one approaches an optimal design.

On the other hand, since the MDA underlies the orig-
inal problem (1), any attempt to avoid an MDA as an
explicit calculation enforced at each step of the opti-
mization must turn some or all of the MDA equations
into consistency constraints in the resulting optimization
problem. (Provided, of course, that the resulting formu-
lation is equivalent to the original problem (1).) In turn,
this means that the optimization algorithm used to solve
the reformulation of (1) must shoulder the effort of solv-
ing part of the MDA problem. This is problematical if
the MDA requires specialized techniques. Moreover, if
the interdisciplinary coupling in the MDA has a domi-
nant effect, then avoiding the MDA may be inefficient.
Thus, in some cases MDA may be unavoidable.

Decomposition and Disciplinary Autonomy

This is another very important issue. For many other rea-
sons (e.g., organizational lines of communication, soft-
ware integration), it is simpler to implement an approach
that avoids the iteration required to solve the MDA. One
has a natural coarse-grained decomposition along the
lines of the disciplines; indeed, the question is not one
of decomposition but integration.
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Unfortunately, in general one should expect disci-
plinary autonomy to be in direct conflict with overall
computational efficiency in the optimization (see the
comments on efficiency below). Nonetheless, where
the coupling between disciplines is not too great, disci-
plinary autonomy might not have too deleterious an ef-
fect in this regard.

Some decomposition approaches, such as Collabo-
rative Optimization, make use of disciplinary optimiza-
tion capabilities, which is seen by some as an attractive
feature. However, the ends to which this capability is
used is often to solve part of the multidisciplinary anal-
ysis problem. Attempting true multiobjective optimiza-
tion or distributed optimization of a separable objective
is not widely done in MDO at present, and is difficult to
accomplish for some serious technical reasons.

One other feature of disciplinary autonomy is its in-
herent parallelism; computation can be carried out inde-
pendently at the discipline level. However, we do not
wish to over-emphasize this as a motivation for decom-
position approaches to (1); the simplicity of disciplinary
autonomy is its primary attraction. Moreover, the ben-
efits of parallelism are somewhat limited because of the
disparity in computational load balancing that often oc-
curs (e.g., computational fluid dynamics takes a much
longer time than structural analysis). Often a sequential
processing of the disciplines makes more sense for phys-
ical and computational reasons.

Work per Iteration vs. Overall Efficiency

An ostensible attraction of approaches to solving (1) that
are based on reformulating and solving the problem de-
composed along the disciplinary lines is that the cost in
each optimization iteration may be much less than that in
a single iteration of applying an optimization algorithm
directly to the original problem (1). However, if the cou-
pling between any of the disciplines strongly influences
the system behavior, this may prove a false economy.
As a general rule in optimization, algorithms based on
decomposition or separability applied to truly coupled
problems are much less efficient, overall, than algorithms
that work with the entirely coupled system.

This should not be surprising, as the following simple
illustrationmakes clear. Suppose one wishes to minimize
an unconstrained, positive definite quadratic inx, and
suppose there aren components ofx. Newton’s method
costsO(n2)work for a single iteration, but finds the solu-
tion in only one iteration. Steepest descent, on the other
hand, costs onlyO(n) work for a single iteration, but, if
the quadratic has highly elongated level sets, then steep-
est descent will take far more thann iterations to arrive
near the solution, negating the smaller per-iteration cost
of steepest descent.

This is generally the case for more complicated op-
timization problems. The Dantzig-Wolfe decomposition
for linear programming problems requires less work per

iteration, but typically the overall cost of solving prob-
lems via this decomposition is greater than that of solv-
ing the problems directly via the simplex method, unless
the problem exhibits a particular structure. Similar com-
ments hold for solving nonlinear optimization problems.

Dimensionality

Another question that arises is the dimension of the opti-
mization problems that ensue from a given formulation.
Arguably, the smaller the dimension, the better. For in-
stance, the MDA (2) can be viewed as avariable reduc-
tion method insofar as it treatsu as a function of the de-
sign variablesx and thus removesu from the optimiza-
tion problem.

On the other hand, any attempt to relax the MDA will
lead to the introduction of the some of theu into the opti-
mization problem. These additional degrees of freedom
in the design problem are then removed by the require-
ment that the MDA equations be satisfied at the optimal
design.

An attractive feature of some decomposition meth-
ods is that one can also eliminate some of the design
variablesx from the system-level optimization problem.
This can be done, for instance, if the effect of some of
the design variables is restricted to a specific discipline.
This strategy is followed in Collaborative Optimization,
as we will discuss.

Another question related to dimensionality is that of
the bandwidth and strength of the interdisciplinary cou-
pling. Depending on how (1) is formulated and solved,
the amount of information that must be exchanged be-
tween disciplines, and the frequency with which infor-
mation must be exchanged, may vary markedly. This, in
turn, is related to the extent to which the problem is be-
ing treated in a decomposed way, which is itself related
to the efficiency with which the overall problem will be
solved.

Treatment of Feasibility

This consideration, central to the taxonomy of MDO
methods, forms the subject of the next section.

Robustness

Given the expense of design optimization, one should de-
mand robustness from any proposed formulation and al-
gorithm for its solution. Some approaches to solving the
MDO problem (1) actually amount to solving some man-
ner of relaxation or approximation of (1), but may en-
counter difficulties as one makes the relaxation more like
the original problem. We give an example of this below,
where a proposed formulation suffers from a deficiency
that can defeat numerical optimization algorithms. One
can fine-tune this approach so that for a given problem
it stably produces answers (though answers only to a re-
laxed version of the design problem); the necessity of
fine-tuning might be acceptable for some situations, but
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not in others. More generally, one would prefer to have
a robust approach from the start.

Solubility by Available Algorithms / Convergence

One question that is, surprisingly, sometimes over-
looked, is the existence of optimization algorithms that
will solve a particular formulation of the MDO problem.
It is possible to reformulate the MDO problem in a way
that is difficult to solve reliably. We touch on this in an
example below; in Alexandrov and Lewis (1999a) one
can find a detailed illustration of two equivalent formu-
lations that manifest drastically different behavior when
conventional optimizers are applied to their solution. In
particular, formulations that lead to nonconvex bilevel
and multilevel problems are hard to solve reliably, and
are expensive to solve, as well.

We must also ask about the convergence properties of
optimization algorithms applied to a given formulation of
the MDO problem. At the very least, one would ask for
a guarantee of convergence from an arbitrary starting de-
sign to at least a local optimizer of the design problem,
since such guarantees are typically part of the analysis of
modern nonlinear optimization algorithms. There is also
the question of the rate at which optimization algorithms
will converge, which in part determines overall efficiency
of the optimization.

The availability of algorithms to solve a particular
formulation of the MDO problem may limit the set of
problems for which the formulation is useful. Similarly,
proposed algorithms for the solution of a given approach
will be limited by their convergence properties.

CLASSIFICATION OF MDO FORMULATIONS

We now turn to a classification of MDO formulations.
The taxonomy we propose differs from other schemes
that have appeared (e.g., Cramer,et al., 1994, Balling
and Sobieski, 1994) .

The proposed classification is based on the way that a
formulation handles the constraints explicit and implicit
in (1). These constraints comprise the following:

� Disciplinaryanalysis constraints, which are equal-
ity constraints implicit in disciplinary analyses;

� Design constraints, which are general nonlinear
constraints, some at the disciplinary level, others
that couple outputs from different disciplines;

� Interdisciplinary consistency constraints, which
are auxiliary constraints introduced to relax inter-
disciplinary coupling.

We will illustrate these distinctions for the following
two-discipline instance of the MDO problem (1):

minimize f(x0; R1(u1(x)); R2(u2(x)))
subject to g0(x0; S1(u1(x)); S2(u2(x))) � 0

g1(x0; x1; u1(x)) � 0
g2(x0; x2; u2(x)) � 0;

(3)

where, givenx, (u1; u2) is the solution of the MDA

A1(x0; x1; u1; T1(u2)) = 0 (4)

A2(x0; x2; u2; T2(u1)) = 0: (5)

The design variablesx have been partitioned intox =
(x0; x1; x2). The system-level design variablesx0 are
shared by both disciplines. The disciplinary design vari-
ablesx1 andx2 are specific to disciplines 1 and 2.

The operatorsRi andSi indicate that perhaps only
a subset of the state variablesui is required to evalu-
ate the system-level objectivef and the design constraint
g0. The constraintsg1; g2 are the disciplinary design con-
straints.

The operatorsTi indicate that the output of one dis-
ciplinary analysis may need to be transformed before be-
ing passed to the other discipline. Equations (4)–(5) are
the disciplinary analysis constraints. They distinguish
the design problem from the conventional NLP. At this
stage, there are no explicit interdisciplinary consistency
constraints.

Alternative formulations of (3) rely on the introduc-
tion of auxiliary variables and consistency constraints.
For instance, we can rewrite the MDA (4)–(5) as

A1(x0; x1; u1; u12) = 0 (6)

A2(x0; x2; u2; u21) = 0 (7)

u12 � T1(u2) = 0 (8)

u21 � T2(u1) = 0: (9)

Thus we can rewrite (3) as an equivalent problem in
(x0; x1; x2; u12; u21):

minimize f(x0; R1(u1(x; u12)); R2(u2(x; u21))
subject to g0(x0; S1(u1(x0; x1; u12));

S2(u2(x0; x2; u21))) � 0
g1(x0; x1; u1(x0; x1; u12)) � 0
g2(x0; x2; u2(x0; x2; u21)) � 0

u12 � T1(u2(x0; x2; u12)) = 0
u21 � T2(u1(x0; x1; u21)) = 0;

(10)
where, given(x; u12; u21), u1 andu2 are found by solv-
ing the disciplinary analysis equations

A1(x0; x1; u1; u12) = 0

A2(x0; x2; u2; u21) = 0:

Equations (8) and (9) are examples of interdisciplinary
consistency constraints. The degrees of freedom intro-
duced by expanding the set of optimization variables to
includeu12; u21 are removed by the consistency con-
straints.

Approaches to MDO problems are generally based
on techniques for eliminating variables from transforma-
tions of the original problem. The variables are elimi-
nated by enforcing various subsets of the constraints in
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different ways. We will say that an MDO formulation
is closedwith respect to a given set of constraints if the
formulation—rather than an optimization algorithm for
its solution—assumes that these constraints are satisfied
at every iteration of the optimization. If the formulation
does not necessarily assume that a set of constraints is
satisfied, we will say that that formulation isopenwith
respect to the set of constraints.

For instance, consider conventional optimization ap-
plied to the formulation (3). We perform a multidisci-
plinary analysis at each step. This corresponds to main-
taining closure of all the disciplinary analysis and inter-
disciplinary consistency constraints in (10).

More generally, MDO formulations are characterized
by the constraint sets with respect to which they are open
or closed. In addition, a particular optimization method
applied to the formulation may enforce closure with re-
spect to additional sets of constraints. However, we again
stress the importance of differentiating between the prop-
erties of a formulation and the properties of an algorithm
for its solution.

We distinguish the following classes of formulations,
based on their treatment of constraints. We refer the
reader to Alexandrov and Lewis (1999b) for details.

� CDA/OD/CIC: Closed disciplinary analysis, open
design constraints, closed interdisciplinary con-
sistency constraints. This is the conventional
formulation (3), also known as the Multidisci-
plinary Feasible (MDF) formulation in Crameret
al. (1994). Further closure with respect to disci-
plinary and system-level design constraints is de-
termined by the kind of optimization algorithm
used. Another example of a formulation included
in this large class is Bi-Level Integrated System
Synthesis (BLISS) by Sobieszczanski-Sobieskiet
al. (1998).

� CDA/CD/OIC: Closed disciplinary analysis,
closed design constraints, open interdisciplinary
consistency constraints. Examples of this class
include Collaborative Optimization (Braun, 1996,
Braunet al., 1997) and the formulation proposed
in Walshet al. (1992) .

� CDA/OD/OIC: Closed disciplinary analysis, open
design constraints, open interdisciplinary consis-
tency constraints. The Individual Discipline Fea-
sible (IDF) approaches discussed in Crameret
al. (1994) and Lewis (1997) are examples of this
class. Again, closure with respect to disciplinary
and system-level design constraints is determined
by the kind of optimization algorithm used.

� OA/OD/OIC: Open analysis, open design con-
straints, open interdisciplinary consistency con-
straints. Simultaneous Analysis and Design
(Haftka,et al., 1990) is an example of this class of

formulation. Once again, closure with respect to
disciplinary and system-level design constraints is
determined by the kind of optimization algorithm
used.

A STUDY OF TWO FORMULATIONS

We now consider members of two classes of formula-
tions and comment on some of their features in terms
of our previous discussion. We choose the two repre-
sentatives because their approaches are very similar, but
a seemingly slight difference in the problem statements
causes their analytical behavior and the effect on opti-
mization algorithms to differ significantly. For simplicity
of exposition, the discussion will proceed in terms of the
two-discipline problem of the preceding section.

Collaborative Optimization

In our classification scheme, Collaborative Optimization
(CO) (Braun, 1996, Braunet al., 1997) is closed with
respect to disciplinary analyses, closed with respect to
design constraints, and open with respect to interdisci-
plinary consistency constraints. CO has three salient fea-
tures.

First, CO is a nonconvex, nonlinear bilevel optimiza-
tion problem of a special structure.

Second, the only constraints of the system-level
problem are the interdisciplinary consistency constraints
that are designed to drive the discrepancy among the dis-
ciplinary inputs and outputs to zero. The values of the
system-level constraints are computed by solving disci-
plinary optimization problems. The number of the con-
sistency constraints is related to the number of the dis-
ciplines, the number of variables shared among the dis-
ciplines, and the number of outputs exchanged among
the disciplines. The form of the consistency constraints
characterizes different instances of CO.

Finally, the disciplinary problems are NLP whose
objective is to minimize the discrepancy between the
system-level variables and their local, disciplinary
copies, subject to satisfying the design constraints. The
disciplinary constraints do not depend explicitly on the
system-level variables that are passed down to the disci-
plinary problems as parameters.

Reformulating (10) along the lines of CO, we intro-
duce new disciplinary design variablesx1

0
; x2

0
that serve

to further relax the coupling between the disciplines
through the shared system-level design variablesx0. At
the system level, we introduce new variablesw1; w2 and
y1; y2 to relax the coupling between disciplines through
the system-level objectivef and constraintg0, respec-
tively. The system-level constraintg0 will be treated as
an additional discipline. The resulting system-level NLP
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in (x0; u12; u21; w1; w2; y1; y2) is

min f(x0; R1(u1(x0; x12; y1)); R2(u2(x0; x21; y2)))
s.t. c0(x0; y1; y2; x00(x0; y1; y2);

z1(x0; y1; y2); z2(x0; y1; y2)) = 0;
c1(x0; u12; y1; x10(x0; x12; y1);
x1(x0; x12; y1); u1(x0; x12; y1)) = 0
c2(x0; u21; y2; x20(x0; x21; y2);
x2(x0; x21; y2); u2(x0; x21; y2) = 0

(11)
where the ci are the consistency constraints we
will shortly describe. We computex1

0
(x0; x12; y1),

x1(x0; x12; y1), andu1(x0; x12; y1) by solving the fol-
lowing minimization problem in(x1

0
; x1) at the disci-

pline level:

minimize


 x1

0
� x0



2
+


 S1(u1(x10; x1))� y1



2
+


 T1(u1(x10; x1))� u12



2
subject to g1(x10; x1; u(x

1

0
; x1)) � 0:

(12)

An analogous problem for discipline 2 defines
x2
0
(x0; x21; y2), x2(x0; x21; y2), andu2(x0; x21; y2):

minimize


 x2

0
� x0



2
+


 S2(u2(x20; x2))� y2



2
+


 T2(u2(x20; x2))� u21



2
subject to g2(x20; x2; u(x

2

0
; x2)) � 0:

(13)

In the disciplinary problems,u1 andu2 are computed via
the disciplinary analyses

A1(x
0

0
; x1; u1; u12) = 0

A2(x
1

0
; x2; u2; u21) = 0:

“Discipline 0” is introduced to treat the system-level de-
sign constraints; the associated disciplinary problem in
(x0

0
; z1; z2) is

minimize


 x0

0
� x0



2 + k z1 � y1 k
2

+ k z2 � y2 k
2

subject to g0(x
0

0
; z1; z2) � 0:

(14)

The introduction of disciplinary minimization subprob-
lems of this form is the distinctive characteristic of CO.
The subproblems are independent of one another and can
be solved autonomously at the discipline level. In do-
ing so, the disciplinary design variablesxi and the disci-
plinary state variablesui are eliminated from the system-
level problem.

Information from the solutions of the disciplinary
problems (12)–(14) is then used to define the system-
level consistency constraintsci. Here we will discuss
two definitions ofci.

The first instance of CO we discuss is the form in
which CO is usually presented (Balling and Wilkinson
(1997), Braun (1996), Braunet al. (1997), Sobieski and

Kroo (1996)) . In this formulation, the consistency con-
dition is to drive to zero the minimum value of subprob-
lems (12)–(14). The system-level consistency constraints
are simply the optimal values of the objectives in (12)–
(14). Bearing in mind that

x0
0

= x0
0
(x0; y1; y2)

x1
0

= x1
0
(x0; x12; y1)

x2
0

= x2
0
(x0; x21; y2)

u1 = u1(x10(x0; x12; y1); x1(x0; x12; y1))
u2 = u2(x20(x0; x21; y2); x1(x0; x21; y2))
z1 = z1(x0; y1; y2)
z2 = z2(x0; y1; y2);

(15)

we have the consistency constraints

c0(x0; y1; y2) =

 x0
0
� x0



2 + k z1 � y1 k
2 + k z2 � y2 k

2

c1(x0; x12; y1) =


 x1

0
� x0



2
+ k S1(u1)� y1 k

2
+ k T1(u1) � u12 k

2

c2(x0; x21; y2) =


 x2

0
� x0



2
+ k S2(u2)� y2 k

2
+ k T2(u2) � u21 k

2
:

(16)

We call this version CO2, where the subscript 2 refers to
the fact that theci are sums of squares.

An alternative to the system-level consistency condi-
tion (16) is to explicitly match the system-level variables
with their subsystem counterparts computed in subprob-
lems (12)–(14):

c0(x0; y1; y2) = (x0
0
� x0; z1 � y1; z2 � y2)

c1(x0; u12; y1) =
(x1

0
� x0; S1(u1) � y1; T1(u1)� u12)

c2(x0; u21; y2) =
(x2

0
� x0; S1(u2) � y2; T1(u2)� u21);

(17)

again, keeping in mind (15). We will denote this ap-
proach as CO1. In general, this leads to more system-
level equality constraints than does CO2. The latter usu-
ally reduces this vector of information about inconsis-
tency into as many constraints as there are subsystems
(Braun, 1996), but the vector may be reduced to a single
scalar.

Note that the number of system-level variables in
the system-level problem (11) depends on the number of
shared variablesx0 and the bandwidth of the interdisci-
plinary coupling, as manifest inu12; u21; w1; w2; y1; y2.
The introduction of these auxiliary variables suggest that
CO will be best suited for problems with a narrow cou-
pling bandwidth. CO possesses a marked degree of dis-
ciplinary autonomy. However, as computational expe-
rience (Alexandrov and Kodiyalam, 1998, Kodiyalam,
1998) and analysis (Alexandrov and Lewis, 1999a) re-
veal, the approach has a number of intrinsic analytical
and computational difficulties.

For instance, in CO2, one can show that Lagrange
multipliers never exist for the system-level constraints
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(16). This means that nonlinear optimization algorithms
will fail if one attempts to truly enforce the consistency
conditionsci = 0; instead, one must be content with a
relaxationk ci k � " for some suitably small". In prac-
tice, the larger" at the system level and the tighter the
convergence criteria for the subsystems, the better are the
chances that an optimization algorithm applied to CO2

will find a solution.
This problem does not occur in CO1. However, in

order to compute the first derivatives in the system-level
optimization problem we must computesecondderiva-
tives at the disciplinary level; this is a consequence of
the fact that CO involves a bilevel optimization prob-
lem, in which the system-level optimization problem in-
volves the output of the disciplinary level optimization
problems.

Other difficulties in both CO1 and CO2 derive from
the fact that CO leads to a nonlinear bilevel optimiza-
tion problem. In particular, the constraints (16) and (17)
possess features that can cause distress for standard op-
timization algorithms. These include the potential for
nonsmoothness due to multiple local minima in the dis-
ciplinary problems (12)–(14). For further details, see
Alexandrov and Lewis (1999a).

Individual Discipline Feasible Approaches

The IDF formulation provides another way to avoid the
expensive MDA iteration. It is closed with respect to
disciplinary analyses, open with respect to design con-
straints, and open with respect to interdisciplinary con-
sistency constraints. Further closure with respect to de-
sign constraints or system level constraints is determined
by the kind of optimization algorithm used.

Various forms of IDF were discussed in Crameret
al. (1994) and Lewis (1997). The term “Individual Dis-
cipline Feasible” originally referred to maintaining clo-
sure with respect to the disciplinary analysis constraints
at each optimization iteration, but not closure with re-
spect to multidisciplinary analysis coupling until a so-
lution is reached. However, the question of disciplinary
design constraints was not really treated in earlier discus-
sion of IDF. Here we discuss the original IDF approach
and its elaboration that treats the design constraints ex-
plicitly.

We begin with (10). The IDF formulation discussed
in (Crameret al., 1994, Lewis, 1997) is closed with re-
spect to the disciplinary analysis constraints:

minimize f(x0; R1(u1); R2(u2))

subject to g0(x0; S1(u1); S2(u2)) � 0
g1(x0; x1; u1) � 0
g2(x0; x2; u2) � 0

u12 � T1(u2) = 0
u21 � T2(u1) = 0;

(18)

whereu1 = u1(x0; x1; u12) andu2 = u2(x0; x2; u21)
are required only to satisfy the disciplinary analysis con-

straints; i.e.,u1 andu2 are defined by solving

A1(x0; x1; u1; u12) = 0

A2(x0; x2; u2; u21) = 0:

In contrast to CO, the IDF formulation is a single-level
NLP.

In the IDF approach, further closure with respect
to disciplinary design constraints or system level con-
straints is determined by the kind of optimization al-
gorithm used. Ideally, one would be able to start with
design variables(x0; x1; x2) for which the disciplinary
design constraints defined by thegi are satisfied. One
could then apply an optimization algorithm that main-
tained feasibility with respect to these constraints so that
all subsequent designs obtained in the course of the op-
timization satisfied the disciplinary design constraints,
thereby accomplishing the same end that CO achieves
through the definition of its disciplinary optimization
problems.

On the other hand, one might rightly object that it
will, in general, be difficult to find initial design variables
(x0; x1; x2) for which the disciplinary design constraints
are satisfied. To address this problem, we can expand the
space along the lines of CO as follows:

minimize f(x0; R1(u1); R2(u2))

subject to g0(x
0

0
; y1; y2) � 0

g1(x10; x1; u1) � 0
g2(x20; x2; u2) � 0

u12 � T1(u2) = 0
u21 � T2(u1) = 0

x0 � x0
0
= 0

x0 � x1
0
= 0

x0 � x2
0
= 0

y1 � S1(u1) = 0
y2 � S2(u2) = 0:

(19)

This relaxes the requirement that the disciplinary design
constraints be satisfied with the system-level values of
x0. In particular, we now have the flexibility to select
the initialxi

0
andyi in a way that the disciplinary design

constraints are satisfied, exactly as in CO. One can then
apply an optimization algorithm that enforces feasibility
with respect to the disciplinary design constraints.

It is straightforward to verify that IDF is equivalent to
the original MDO. This makes IDF easy to analyze; for
instance, if standard constraint qualifications are satisfied
by the original problem, then they also hold for the IDF
formulation. The convergence properties of optimization
algorithms applied to IDF are those of the algorithms ap-
plied to conventional NLP. Given a good solver for equal-
ity constrained optimization problems, the method is ex-
pected to be efficient.

Similarly to CO, IDF is intended for problems with
small bandwidth of interdisciplinary coupling, and the
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problem of decomposition is similar to that of CO.
Also similarly to CO, formulations that arise from IDF
have more optimization variables that those arising from
MDF.

Importantly, although IDF maintains autonomy with
respect to analyses, it lacks CO’s autonomy with respect
to disciplinary optimization. That is, while the anal-
yses are performed autonomously during the analysis
stage, the coupling is restored during the optimization
step computation. This brings back the difficulties of in-
tegration. On the other hand, as previously noted, the dis-
ciplinary optimization in CO is actually part of address-
ing the MDA, not actually improving the disciplinary ob-
jectives of the true design problem, such as weight or the
lift-to-drag ratio.

CONCLUDING REMARKS

This paper has introduced a portion of an extensive ef-
fort aimed at furthering the understanding of the analyti-
cal and computational properties of methods for solving
MDO problems and at proposing efficient methods based
on this understanding. We emphasized the distinction
between an MDO formulation and an optimization algo-
rithm and discussed a new, comprehensive classification
of MDO formulations based on the way the constraint
sets are explicitly treated in a formulation. Members of
two formulation classes were discussed as an example.

When considering an MDO problem statement, both
the problem formulation and the available nonlinear pro-
gramming algorithms for solving the formulation must
be examined carefully with the following questions in
mind: How is the new formulation related to the ba-
sic NLP formulation of the MDO problem? Does the
new formulation lead to an optimization problem that is
not amenable to solution by existing optimization algo-
rithms? For instance, is the new formulation a nonconvex
multilevel optimization problem?

The motivation for a prospective formulation must be
continually re-examined. It may be discovered that what
one attempts to accomplish via a formulation with a diffi-
cult structure is more easily accomplished by a judicious
choice of an optimization algorithm.

As a rule, full disciplinary autonomy with respect to
optimization is in direct conflict with computational effi-
ciency for general problems. If the coupling between the
disciplinary subsystems is sufficiently broad and strong,
one may wish to consider formulations that sacrifice
some degree of autonomy for the sake of efficiency, es-
pecially since there are optimization algorithms to which
such problems are amenable.
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